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We present a method to compute the exact gravity field inside and outside a planet with an arbitrary density structure. The computations are done non-linearly and are therefore applicable for large
asphericities, such as those on Mars, the Earth or the Moon. This method allows us to take into account all kinds of inhomogeneities (i.e lateral density variations, variations of the depth of each
interface) and allows the modeling of gravity fields  with lateral variations as large as about degree 200.
The lithospheric deflection associated with surface loads can be obtained from the value of the potential on each density interface and can provide an estimation of the elastic thickness of the
lithosphere. These estimates can be used to place constrains on the heat flow of the planet and hence, on its thermal evolution.
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This computational method is a part of a global project studying  the lithospheric structure and
composition of martian volcanoes.
Current crustal thickness models of Mars are computed under the assumption that the crust is
homogenous in composition and hence density. This assumption is likely incorrect for the martian
volcanoes and Tharsis rise.
A goal of this project is to use the new set of very precise data (often better than for the Earth) in
order to construct a model of the crust with a variable thickness and lateral density variations.

U and g are  exactly determined on the surface as well as on any density interface
within the planet.

Input:
- Surface topography
- Relief along any number of density
interfaces
- Lateral variations of density

Output:
- g(r,q,f) and U (r,q,f) at all
points inside and on the surface of
the planet.

2 steps in the computation :
- calculation of U and g at an altitude R0 above the mean planetary
radius (analogous to Wieczorek and Phillips 1998)
- downward propagation of U and g to each density interface
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Principles of the method :
Spectral/space domain : Spectral/space domain : computations are performed both in the space and spectral domaincomputations are performed both in the space and spectral domain

spectral domain                    space domain

- All lateral variation effects are computed in the space domain (collocation grid).
- All  angular derivatives are done in the spectral domain

• Angular derivatives become scalar multiplications
• No need to use Clebsh-Gordon coefficients
• Reduction of the amount of computing by l2

• Can be applied for variations of high angular degree (l ≥ 200)

Pseudo-spherical variables :

- Irregular surfaces are mapped to spherical surfaces using a parameter s.
- Gravity and potential integrations are performed between boundaries independent of q

and j .
- The interface effects can be considered as perturbations of the gravity equation in the

mapped coordinates.

Legendre Transform

Legendre Transform -1

fiThe fields are resolved on r(q, f)

Downward propagation :
• Separation of the spherical and perturbation
components

∆g1, ∆U1 << g0,U0

- Reduction of numerical errors.
-Allows the development of the field utilizing
spherical basis functions.

• U, g and their derivatives are computed on
each interface (in s, q, j coordinates) by
solving the set of first-order differential
equations with either the Euler or Runge -Kutta
method :

First step :
U and g are determined at R0 by the following

equations

  

† 

U(R0,q,j) = Â
lm

BlmYlm (q,j)dV '

  
Alm = G

V'
Ú r(r' ,q ' ,j ' )Ylm(q' ,j' )r' l dV'

with

  
Blm =

1
R0

Ê 
Ë 

ˆ 
¯ 

l+1 1
2l + 1 Alm

LT-1

And,

† 

g = -—U

† 

U(s,q,j) = U 0(s) + DU1(s,q,j)
g(s,q,j) = g0(s) + Dg1(s,q,j)

† 

g = —U
—.g = -4prG
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The mass-sheet approximation is not valid for high topography :
On Mars, in regions of high topography such as the Tharsis rise and its associated montes,
the finite amplitude of topography has to be taken into account in order to obtain a good
estimation of the gravity.

Gravity signal associated with the topography computed with the propagation
method  and with the mass-sheet approximation.

1. At spacecraft altitude (100 km)

2. Propagated to the surface

ÿ The mass-sheet approximation tends to underestimate the gravity field for region of high
topography.
ÿ The errors are greater at the surface (with a mean difference of 35%).

Relative differences between the 2 computed
gravity signal
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Application :Determination of elastic thickness
From the potential value on each density interface, the deflection w associated

with a surface load can be determined from.

With

(when rL= rc and TE ≤Tc)

-First application : Determination of the elastic thickness below Elisium

• Consistent with the 50 km ≤ TE ≤ 80 km of McGovern et al 2002 (performed in
spectral domain).
Inconsistent with TE=25 km of McKenzie et al. 2002 (in spectral domain).
• Differences between observed and calculated gravity are most likely due to subsurface
loads.

-Next step :
• Include subsurface loads as well as surface loads with densities different from the
crust.
• Determine geometry and magnitude of subsurface loads.
•Convert TE estimates into heat flux estimates at the time of loading.

† 

D—6w + 4D—4w + ETE R2—2w + 2ETE R2w = R4 (—2 +1-n )q

q = -rcU (R + w) - (rm - rc)U(R - Tc + w)

fi in order to calculate q we need to
know the potential on each density
interface which depends on the
flexure.
fi the above two equations need to
be solved iteratively
fi  convergence after ≈ 6 iterations
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r(q,j) = r1(q,j) +
r2 q,j( ) - r1 q,j( )

s2 - s1

¥ s - s1( )


